Abelian Invariants of Satellite Knots

نویسندگان

  • Charles Livingston
  • Paul Melvin
  • Bryn Mawr
چکیده

A knot in S 3 whose complement contains an essential** torus is called a satellite knot. In this paper we discuss algebraic invariants of satellite knots, giving short proofs of some known results as well as new results. To each essential torus in the complement of an oriented satellite knot S , one may associate two oriented knots C and E (the companion and embellishment) and an integer w (the winding number). These are defined precisely below. In the late forties, Seifert [S] showed how to compute the Alexander polynomial of S in terms of w and the polynomials of C and E . Implicit in his work is a description of the Alexander module of S . Shinohara [SI,$2] recovered Seifert's results and computed the signature of S using an illuminating description of the infinite cyclic cover M S of S (recalled in ~I below as built up out of the covers of C and E . This description of M S is in essence also due to Seifert ([S] pp. 25, 28). Using it, Kearton [K] stated (without proof) various properties of the Blanchfield palring of S , and deduced a formula for the p-signatures of S (obtained independently by Litherland [L] from a 4-dimensional viewpoint). In §2 we give a complete description of the Blanchfield pairing of S . It depends only on w and the Blanchfield pairings of C and E . (In contrast S cannot be recovered from w , C and E .) In theory one may then compute all the abelian invariants of S from w and the associated invariants of C and E , as the Blanchfield pairing of a knot determines its Seifert form [T2]. This seems difficult in practice however, and so it is appropriate to give more direct computations using the description of M S This is done in §3 for the quadratic form of S , which recovers Shinohara's computation of the signature and gives a formula for the rational Witt invariants of S .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quandle coloring and cocycle invariants of composite knots and abelian extensions.

Quandle colorings and cocycle invariants are studied for composite knots, and applied to chirality and abelian extensions. The square and granny knots, for example, can be distinguished by quandle colorings, so that a trefoil and its mirror can be distinguished by quandle coloring of composite knots. We investigate this and related phenomena. Quandle cocycle invariants are studied in relation t...

متن کامل

Detecting knot invertibility

We discuss the consequences of the possibility that Vassiliev invariants do not detect knot invertibility as well as the fact that quantum Lie group invariants are known not to do so. On the other hand, finite group invariants, such as the set of homomorphisms from the knot group to M11, can detect knot invertibility. For many natural classes of knot invariants, including Vassiliev invariants a...

متن کامل

Representations of Composite Braids and Invariants for Mutant Knots and Links in Chern - Simons Field Theories

We show that any of the new knot invariants obtained from Chern-Simons theory based on an arbitrary non-abelian gauge group do not distinguish isotopically inequivalent mutant knots and links. In an attempt to distinguish these knots and links, we study Murakami (symmetrized version) r-strand composite braids. Salient features of the theory of such composite braids are presented. Representation...

متن کامل

The Loop Expansion of the Kontsevich Integral, Abelian Invariants of Knots and S-equivalence

Hidden in the expansion of the Kontsevich integral, graded by loops rather than by degree, is a new notion of finite type invariants of knots, closely related to S-equivalence, and with respect to which the Kontsevich integral is the universal finite type invariant, modulo S-equivalence. In addition, the 2-loop part Q of the Kontsevich integral behaves like an equivariant version of Casson’s in...

متن کامل

The Universal Order One Invariant of Framed Knots in the Total Spaces of S-bundles over Orientable Surfaces

It is well-known that self-linking is the only Z-valued Vassiliev invariant of framed knots in S. However for most 3-manifolds, in particular for the total spaces of S-bundles over an orientable surface F 6= S, the space of Z-valued order one invariants is infinite dimensional. We give an explicit formula for the order one invariant I of framed knots in orientable total spaces of S-bundles over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006